734 research outputs found

    Invariants and Labels in Lie-Poisson Systems

    Full text link
    Reduction is a process that uses symmetry to lower the order of a Hamiltonian system. The new variables in the reduced picture are often not canonical: there are no clear variables representing positions and momenta, and the Poisson bracket obtained is not of the canonical type. Specifically, we give two examples that give rise to brackets of the noncanonical Lie-Poisson form: the rigid body and the two-dimensional ideal fluid. From these simple cases, we then use the semidirect product extension of algebras to describe more complex physical systems. The Casimir invariants in these systems are examined, and some are shown to be linked to the recovery of information about the configuration of the system. We discuss a case in which the extension is not a semidirect product, namely compressible reduced MHD, and find for this case that the Casimir invariants lend partial information about the configuration of the system.Comment: 11 pages, RevTeX. To appear in Proceedings of the 13th Florida Workshop in Astronomy and Physic

    Singular Casimir Elements of the Euler Equation and Equilibrium Points

    Full text link
    The problem of the nonequivalence of the sets of equilibrium points and energy-Casimir extremal points, which occurs in the noncanonical Hamiltonian formulation of equations describing ideal fluid and plasma dynamics, is addressed in the context of the Euler equation for an incompressible inviscid fluid. The problem is traced to a Casimir deficit, where Casimir elements constitute the center of the Lie-Poisson algebra underlying the Hamiltonian formulation, and this leads to a study of the symplectic operator defining the Poisson bracket. The kernel of the symplectic operator, for this typical example of an infinite-dimensional Hamiltonian system for media in terms of Eulerian variables, is analyzed. For two-dimensional flows, a rigorously solvable system is formulated. The nonlinearity of the Euler equation makes the symplectic operator inhomogeneous on phase space (the function space of the state variable), and it is seen that this creates a singularity where the nullity of the symplectic operator (the "dimension" of the center) changes. Singular Casimir elements stemming from this singularity are unearthed using a generalization of the functional derivative that occurs in the Poisson bracket

    Classification and Casimir Invariants of Lie-Poisson Brackets

    Full text link
    We classify Lie-Poisson brackets that are formed from Lie algebra extensions. The problem is relevant because many physical systems owe their Hamiltonian structure to such brackets. A classification involves reducing all brackets to a set of normal forms, and is achieved partially through the use of Lie algebra cohomology. For extensions of order less than five, the number of normal forms is small and they involve no free parameters. We derive a general method of finding Casimir invariants of Lie-Poisson bracket extensions. The Casimir invariants of all low-order brackets are explicitly computed. We treat in detail a four field model of compressible reduced magnetohydrodynamics.Comment: 59 pages, Elsevier macros. To be published in Physica

    Hamiltonian fluid closures of the Vlasov-Ampère equations: from water-bags to N moment models

    No full text
    International audienceMoment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed

    On reconnection phenomena in the standard nontwist map

    Full text link

    Chern-Simons Reduction and non-Abelian Fluid Mechanics

    Get PDF
    We propose a non-Abelian generalization of the Clebsch parameterization for a vector in three dimensions. The construction is based on a group-theoretical reduction of the Chern-Simons form on a symmetric space. The formalism is then used to give a canonical (symplectic) discussion of non-Abelian fluid mechanics, analogous to the way the Abelian Clebsch parameterization allows a canonical description of conventional fluid mechanics.Comment: 12 pages, REVTeX; revised for publication in Phys Rev D; email to [email protected]

    What a classical r-matrix really is

    Full text link
    The notion of classical rr-matrix is re-examined, and a definition suitable to differential (-difference) Lie algebras, -- where the standard definitions are shown to be deficient, -- is proposed, the notion of an O{\mathcal O}-operator. This notion has all the natural properties one would expect form it, but lacks those which are artifacts of finite-dimensional isomorpisms such as not true in differential generality relation \mbox{End}\, (V) \simeq V^* \otimes V for a vector space VV. Examples considered include a quadratic Poisson bracket on the dual space to a Lie algebra; generalized symplectic-quadratic models of such brackets (aka Clebsch representations); and Drinfel'd's 2-cocycle interpretation of nondegenate classical rr-matrices
    corecore